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Abstract. The concept of shell structure has been found useful in the description of semiconductor quantum
dots, which today can be made so small that they contain less than 20 electrons. We review the experimen-
tal discovery of magic numbers and spin alignment following Hund’s rules in the addition spectra of vertical
quantum dots, and show that these results compare well to model calculations within spin density functional
theory. We further discuss the occurrence of spin density waves in quantum dots and quantum wires. For
deformable two-dimensional quantum dots (for example, jellium clusters on surfaces), we study the inter-
play between Hund’s rules and Jahn–Teller deformations and investigate the effect of magnetic fields on the
ground-state shapes.

PACS. 71 Electronic structure – 73.20.Dx Electron states in low-dimensional structures – 85.30.Vw Low-
dimensional quantum devices

1 Introduction

In solid-state physics, a beautiful analogy to shell struc-
tures and magic numbers in nuclei was found [1, 2] more
than a decade ago: Sodium clusters with “magic” num-
bers of valence electrons appeared with enhanced abun-
dance in the mass spectra. Following this discovery, much
research focused on drawing analogies between such seem-
ingly different systems as nuclei and metal clusters [3], and
methods of nuclear physics were found useful for describ-
ing the electronic structure of such finite-sized samples
of condensed matter. Today, one of the frontiers of con-
densed matter research is the study of low-dimensional
nanometer-sized devices, with the aim of employing quan-
tum electronics in technology [4]. Examples are the so-
called bottom-up structures formed by self-organization of
atoms and molecules into clusters and nanocrystals, and
top-down structures created from larger pieces of materi-
als by modern semiconductor processing techniques. Such
man-made nanostructures confining a countable number
of electrons are often called artificial atoms [5], because
their electronic properties (for example, ionization or ex-
citation energies) have many analogies to atomic physics.
The most popular type of such devices are quantum dots,
i.e., small electron islands artificially made from semicon-
ductor heterostructures by lithography methods or etch-
ing techniques. Using electron beam lithography, metallic
gates can be patterned on the surface of a heterostruc-
ture, such that the two-dimensional electron gas (2DEG)
in the interface region of the different semiconductor ma-
terials beneath the gates is depleted, and the electrons are
trapped in a conducting island. However, it is technically

difficult to make the lithography very small. Most of the
dots studied so far contain several hundred electrons and
are more mesoscopic than microscopic quantum objects.
Persson et al. [6] were among the first to show that the con-
cept of a gross shell structure could provide a simple expla-
nation of regular conductance oscillations, if one assumed
tunneling through the quantum point contact barriers con-
necting the dot with the leads. A semiclassical approach
using periodic orbit theory [7] (which had earlier been suc-
cessful in explaining the shell- and supershell structure [8]
in metal clusters) was found useful, as it allowed for a sim-
ple model of the more complicated many-particle problem
in strong magnetic fields [9].

Besides the technical problems in their fabrication,
gated quantum dots have other disadvantages when they
are studied in very small systems: the tunnel barriers at
the quantum point contacts, which are formed by the elec-
trostatic depletion potential and connect the dots with
the outer 2DEG become too large for a current to be ob-
served [4].

Clear signals of shell structure in smaller systems as
discovered recently [10] only became observable in experi-
ments with vertical quantum dots, where the problem of
large tunnel barriers could be avoided by the use dou-
ble heterostructure barriers, which are more abrupt and
thin [4]. Furthermore, the possibility of applying side gates
around the mesa provided a much way of changing the
dot size and geometry that was much more controlled
than that using top gates for lateral structures. For such
vertical dots, it was possible for the first time to probe
the shell structure of an artificial atom with less than 20
electrons [10].
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Fig. 1. Schematic diagram of a vertical quantum dot. From
[10].

Shell fillings and the occurrence of Hund’s rules have
been reported earlier in both experimental [5, 6, 10] and
theoretical [11–14] work. Here, we directly compare the
measured addition spectra to results of spin density func-
tional calculations (SDFT) [15] in the local spin density
approximation (LSDA) and show that the experimen-
tally observed shell gaps and the filling of single-particle
levels following Hund’s rules are in line with the theoret-
ical results. We then extend our studies to deformed dots
and quasi-one-dimensional (quasi-1D) quantum wires. We
finally show that for deformable many-fermion systems
(for example, metal clusters where the confinement is
provided by a deformable charge background in which
the delocalized valence electrons move), the ground-state
symmetries are determined by Jahn–Teller deformations,
which overcome Hund’s rules, and we study the effect of
magnetic fields on the symmetries of the ground states of
quasi-two-dimensional electron gas clusters [16].

2 Shell structure in vertical quantum dots

A schematic picture of the gated vertical quantum dot used
in [10] is shown in Fig. 1. The small conducting electron
island forming the dot can be squeezed by a change in
the voltage on a circular Schottky side gate around the
structure. It is connected to the macroscopic voltage and
current meters via the source and drain contacts. When
the current as a function of the gate voltage was meas-
ured, current peaks were observed for each electron enter-
ing the dot. The spacing between two subsequent current
peaks is proportional to the energy needed to add one
more electron: This change in the so-called addition energy
strongly depends on the number of particles already con-
fined. Responsible for this are the electron–electron inter-
actions, which become the more important the smaller the
dot size is. Vertical quantum dots as described here have
a disk shape with a thickness-to-diameter ratio of roughly
1:10 with a rather soft boundary [17]. One usually models
such dots by a system of N electrons confined to a two-
dimensional harmonic oscillator potential. At high densi-

ties, the kinetic energy dominates, and a model of indepen-
dent electrons works reasonably well. The eigenspectrum
of the two-dimensional oscillator potential εn = h̄ω(n+ 1)
has level degeneracies dn = n+1, and thus magic shells are
expected at the particle numbers N = 2, 6, 12, 20, ... In the
midshell regions, exchange effects become important, lead-
ing to spin alignment in degenerate single-particle orbitals
following Hund’s rules. To model the electronic structure of
small dots, we have earlier applied density functional the-
ory (DFT) in the local spin density approximation (LSDA)
using the exchange-correlation functional of Tanatar and
Ceperly [18]. (We refer to [12] for a more detailed descrip-
tion of the computational method used here). While most
of the work on SDFT and Hartree–Fock calculations for
circular quantum dots makes use of the azimuthal sym-
metry [19], we work in a plane wave basis, and thus our
computational method avoids any symmetry restrictions
for the solutions. The latter was found to be essential in ac-
counting for spontaneously broken symmetries, e.g., spin
density waves [12], and also allowed us to study noncircu-
lar dots.

2.1 Circular quantum dots

Consider nowN electrons bound in the harmonic potential
V =m∗ω2(x2 +y2)/2, where m∗ is the effective mass. The
parameter ω2 = e2/(4πε0εm

∗r3
s

√
N) determines the aver-

age particle density n0 = 1/(πr2
s) from the dot size N and

the 2D Wigner–Seitz radius rs. From the solution of the
Kohn–Sham (KS) equations for different particle num-
bers and the choice of rs = 1.51 a∗B (corresponding to the
equilibrium density of the two-dimensional electron gas),
ground-state energies and densities were obtained. (We
note that for full convergence, usually several hundred iter-
ations of the KS equations were needed). In order to com-
pare this to the experimental data, we calculated the effect-
ive atomic units for the energy Ry∗ = m∗e4/2h̄2(4πε0ε)

2

and length a∗B = h̄2(4πε0ε)/m
∗e2 using the dielectric con-

stant ε ≈ 13.1 and effective mass m∗ = 0.067me in GaAs,
which yields a∗B = 10.7 nm and Ry∗ = 5.31 meV.

The addition spectra obtained experimentally from the
current peak spacings can be theoretically modeled by the
differences ∆2(N) = µ(N + 1)−µ(N) in the chemical po-
tential µ(N) = E(N)−E(N − 1). In the lower panel of
Fig. 2, the solid line shows the addition energy changes
obtained from the total ground-state energies calculated
within the LSDA. The dashed line shows the experimen-
tal data [10] for a quantum dot with a diameter of about
0.5 µm. From this comparison, we see that the LSDA al-
lows a surprisingly accurate estimate of the addition spec-
tra. Both in the theoretical and experimental data, large
amplitudes in ∆2(N) are observed when the electron num-
ber coincides with a magic number N = 2, 6, or 12 of the
single-particle two-dimensional harmonic oscillator. In the
experimental data, however, no signals of a shell gap at
N = 20 are seen [20]. In the midshell regions, we observe
additional maxima at N = 4 and N = 9, and a less pro-
nounced maximum in the experimental data at N = 16.
Here, the total spin is nonzero, due to Hund’s rule; this fa-
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Fig. 2. Lower panel: Addition energy changes ∆2(N) as
a function of the electron number N for quantum dots with
circular symmetry. Solid line: results from SDFT calculations;
dashed line: experimental results from [10]. The numbers indi-
cate the magic shell closures. Upper panel: Ground-state spin
obtained within LSDA.

vors large spins and thus magnetic states for electrons in
degenerate, nonclosed shells.

The upper panel of Fig. 2 shows the total spin S(N) as
a function of particle number N obtained from the number
difference of up-spin and down-spin particles. In the circu-
lar symmetric case, the function S(N) is zero for the magic
numbers and has maxima in the midshell regions.

Whereas the addition spectrum has the largest energy
for N = 2, it gets strongly reduced for N = 3. The reason
is the occurrence of spin degeneracy, that is, an unpaired
spin in the highest occupied twofold degenerate orbital and
total spin S = 1/2. Adding one more electron for N = 4
in the circular case, Hund’s rule yields a total spin S = 1,
since orbital degeneracy favors spin alignment in the high-
est occupied levels. ForN = 9, the situation is very similar,
yielding a total spin S = 1 1

2 .
Even without external magnetic fields, quantum dots

show a rich variety of different magnetic ground-state
structures: In dots with a larger number of electrons or
a lower average electron density, states with nonuniform
magnetization similar to spin density waves (SDW) first
studied by Overhauser [21] can occur [12]. For the average
density used in the calculation of the addition spectra in
Fig. 2, such states are often found to have a slightly higher
energy than the Hund state with nonzero total spin, but
are ground states for, e.g., N = 24 and 34. Generally, de-
pending on the value of rs and the dot size N , there exists
a critical value of the density where the SDW state sets in.

Fig. 3. Lower panel: Like Fig. 2, but for ellipsoidally deformed
dots (solid line). The thin dashed line shows the results for
circular dots for comparison. Also shown are the results for
quasi-one-dimensional quantum wires without any shell struc-
ture (see Sect. 3). Upper panel: Total spin S.

The lower the average density is, the more ground states
are found to be SDW states.

2.2 Deformed dots

We next study the shell structure and addition energies for
anisotropic confinement V (x, y) = m∗ω2(x2δ+ y2/δ)/2,
where the deformation parameter δ is the ratio of the os-
cillator frequencies ωx/ωy and corresponds to the inverse
ratio of semiaxes of the ellipsoid. The addition energies for
δ = 1.4 are shown in Fig. 3 (lower panel) together with the
ground-state spin (upper panel) as a function of the dot
size N . (The thin dashed line repeats the results for the
circular dots for comparison.) One notices that the ellip-
soidal deformation eliminates the magic shell closures at
2, 6, 12, and 20 as a simple consequence of broken symme-
try. A similar reduction of the amplitudes in the addition
spectra was also found for smaller deformations down to
δ = 1.1. Such deviations from perfect circular symmetry
might explain why no pronounced shells could be seen for
N = 20 in the experimental data [10] (cf. Fig. 1). We fur-
ther observe that the odd–even oscillations in ∆2(N) for
the circular dots are far less pronounced in the deformed
systems. From a comparison of the ground-state spins in
the circular and deformed case (see upper panels of Figs. 2
and 3), we see that the total spin changes with deforma-
tion. ForN = 12, which corresponds to a closed shell in the
circular system, the spin has changed from the unpolar-
ized S = 0 state to a Hund state with S = 1 in the elliptic
confinement. Conversely, the spin in the midshell regions is
now reduced, changing, for N = 9, from S = 1 1

2 to S = 1
2 ,
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Fig. 4. Spin polarization in finite quantum wires with N = 12
and N = 50 electrons.

and for N = 16, from S = 2 to S = 0. The latter corres-
ponds to a small-amplitude SDW ground state. For dots
with magic shells, which are paramagnetic in the circular
case, the deformation changes the ground state to a strong
antiferromagnetic SDW with a large gap at the Fermi sur-
face. A more detailed comparison to recent measurements
of addition spectra for deformed dots [22] will be given else-
where.

3 Quasi-one-dimensional electron systems

As the deformation gradually increases, the dots become
quasi-one-dimensional: Along the shorter semi-axis of the
deformed oscillator, the electrons occupy only the lowest
states, whereas they can move freely in the direction of
the longer axis. Such “superdeformed” dots resemble finite
quantum wires.

The properties of interacting electrons in quasi-1D sys-
tems have been discussed much in connection with recent
experiments on quantum point contacts (i.e., short con-
strictions connecting two electron reservoirs) made from
heterostructures [23, 24] or small pillars of metallic ma-
terial made by STM techniques (see [25] and references
quoted therein). Special interest has been focused on the
observation that depending on the width of the wires, the
electron gas can polarize at rather large one-dimensional
densities. From SDFT calculations, however, we found that
before such Bloch instabilities occur, a spin–Peierls tran-
sition to a spin density wave state with antiferromagnetic
order can be more energetically favorable [12].

Figure 4 shows for superdeformed quantum dots with
12 electrons at deformation δ = 12.5, as well as 50 electrons
at deformation δ = 25, the normalized spin polarization
χ̃= (n↑−n↓)/n0, plotted along the longer wire axis. (Here,
n↑,↓ labels the up- and down-spin density, respectively.)
The polarization shows pronounced oscillations with an
equal number of maxima and minima. Such an SDW with

total spin resembles antiferromagnetic order and is charac-
terized by a very large Fermi gap. The SDW causes a peri-
odicity in the effective mean field potential. This can lead
to localized end states [12] in a similar way to how surface
states appear in a 3D lattice: The highest state is shifted
into the Fermi gap, and the corresponding wave function is
localized at both ends of the wire.

For even electron numbers, the total spin equals S = 0,
and for odd electron numbers, it is S = 1

2 . In both cases,
a large-amplitude SDW occurs. Due to the one-dimension-
ality, no shell gaps exist, and consequently the addition
spectrum changes into a smooth curve (see lower panel
of Fig. 3) when the system is gradually deformed towards
a quasi-1D finite quantum wire.

4 Clusters on surfaces

Extensive studies of clustering processes of atoms on sur-
faces in recent years [26] have been motivated by the hope
that nanostructures supported on surfaces could form a ba-
sis for the development of single-electron transistors and
other quantum components. In a simple model for studying
the electronic properties of such planar self-organized arti-
ficial atoms, one can neglect the interaction of the clusters
with the surface and make use of the jellium model in its
ultimate limit, assuming a fully deformable positive charge
background, which compensates the charge density of the
delocalized valence electrons.

4.1 Magic triangles in two-dimensional electron gas
clusters

We have seen that spin effects and pronounced magic num-
bers are particularly strong for a rigid and highly symmet-
ric confinement of the electronic system. In the ultimate
jellium (UJ) model mentioned above, however, the elec-
tron gas is not subject to any external confinement, but can
spontaneously break the symmetry; optimizing electronic
structure such that the resulting shapes are deformed, and
a gap is opened at the Fermi surface.

We have earlier studied the shapes of quasi-2D planar
metal clusters in the UJ approach and found that for 2D
clusters with magic shells N = 6, 12, 20, and 30, triangu-
lar symmetries are preferred. An example of the density
for these triangular ground states is shown in panel (a) of
Fig. 5 for N = 30. Between the magic shell closings corres-
ponding either to circular or triangular geometry, strong
Jahn–Teller deformed ground-state shapes were found [16].
Spontaneous symmetry breaking, which minimizes the de-
generacy at the Fermi surface by opening a gap, seems to
be energetically more favorable than retaining the sym-
metry and aligning the spins, or setting up a spin density
wave. This result is supported by the observation that no
states with nonuniform magnetization were found in any of
the cases studied within the ultimate jellium model in zero
magnetic fields.

The shell structure of planar clusters with 6, 12, 20,
and 30 electrons suggests that such systems could be rather
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Fig. 5. Ground-state densities n(x, y) and their contours for
an ultimate jellium cluster with N = 30 electrons in magnetic
fields perpendicular to the xy plane. Magnetic fields and length
scales are in atomic units.

stable. Recently, Lai and Wang [27] have deposited gal-
lium on the hexagonal surface of silicon. Using tunneling
microscopy techniques, they observed a clustering process
in the growth pattern of the gallium layer. Surprisingly,
the gallium clusters showed a strong tendency to have tri-
angular shapes, and a clustering of 10 atoms in a regu-
lar triangle seems to be the most abundant pattern. The
formation of the gallium clusters is governed by interac-
tions with the substrate, geometrical effects, and electronic
structure. The hexagonal packing of atoms in the two-
dimensional gallium layer should lead to the formation of
either hexagons or equilateral triangles. Lai and Wang [27]
have pointed out that the triangular shape yields a smaller
number of dangling bonds on the silicon surface than the
hexagonal shape and is thus preferred. Considering the

electronic structure, one could now speculate that shell ef-
fects might support the triangular geometry in the cluster
formation process: In the 10-atom gallium cluster, 18 of
the valence electrons are needed to saturate the dangling
bonds of the silicon surface. This would leave 12 free elec-
trons corresponding to the magic number 12 for the trian-
gular electron gas clusters discussed above.

4.2 Effect of magnetic fields on the shell structure of
triangular 2D clusters

We next study the effect of a magnetic field on the shape
and density distribution of triangular clusters. Vignale and
Rasolt [28] developed the so-called current spin density
functional theory (CSDFT), which includes the effect of
orbital currents and provides a method for describing in-
teracting fermions in a gauge field. This formalism was
applied by various groups [14, 19] to describe quantum dot
spectra in magnetic fields under the assumption of rota-
tional symmetry. We refer to the contribution of Koskinen
et al. [29] in these proceedings for a more detailed descrip-
tion of the CSDFT method for systems with broken sym-
metry, and comment here only on the effect of a magnetic
field on the triangular UJ clusters. When applying a weak
magnetic field, the resulting modifications in the single-
particle energies and eigenfunctions let us expect that the
clusters change their symmetry. We first study the triangu-
lar UJ cluster with six electrons. As the field is increased
from zero, the ground state retains its symmetry, until at
about B = 0.4 a.u., the shape changes to a stadium-like
geometry. (In the following, we give the magnetic field in
atomic units, where 1 a.u.= 6.86 T.) For fields larger than
0.6 a.u., the shape then changes to circular symmetry. (The
cluster becomes polarized only for extreme fields above
B > 8 a.u.) For 30 electrons, the situation is quite simi-
lar, with the only difference being that the larger particle
number allows a larger variety of different shapes as the
magnetic field is gradually raised. Again, in zero fields the
ground state is triangular (see panel (a) of Fig. 4). Up to
B = 0.025 a.u., the shape changes to a stadium-like geom-
etry, and isomers of different shapes occur. At B = 0.1 a.u.
(see panel (b) of Fig. 5), the shape changes to a regu-
lar hexagon. Finally, for B ≥ 0.3 a.u., only circular shapes
were found. From the density profiles shown in panel (c)
for B = 0.3 a.u. as an example, one notices that the az-
imuthally symmetric droplets show radial oscillations in
the density. The angular momentum is raised to the in-
teger value L = 114. For even larger fields, the density in
the middle of the dot becomes more homogeneous, and
the system gradually develops into a state quite similar to
the so-called maximum density droplet [30] for both spins
σ ∈ {↑, ↓}, where angular momentum is a good quantum
number and the lowest momenta l = 0, 1, 2, ..., (Nσ−1)
for each spin are occupied. (Here, Nσ labels the number
of up- and down-spin particles, respectively). This is in
agreement with the observation that the total angular mo-
mentum in this case equals L = 210. From (c) and (d) in
Fig. 5, we see that the system size shrinks with increas-
ing field: The charge-compensated electron gas retains the
filling factor ν = 1 for each spin direction because of the
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increase in density. Consequently, fractional filling factors
would not be accessible in the fully charge-compensated ul-
timate jellium model.

5 Conclusions

We have seen that shell structure, as it occurs in three-
dimensional finite fermion systems, such as atoms, nuclei,
and metal clusters, also can be observed [10] in the addition
spectra of small vertical quantum dots. The experimental
data were found to agree well with the description in the
SDFT framework. This demonstrates the great reliability
of the local density approximation, as is also known from
its applications in atomic physics.

At about the equilibrium density of the 2DEG, the
magic numbers in the finite system correspond to those
of the noninteracting single-particle spectrum of the con-
fining potential. Exchange becomes important only in the
midshell regions. There, it systematically leads to spin
alignment in degenerate single-particle orbitals following
Hund’s rules.

The electrostatic confinement of quantum dots is much
more shallow than the 1/r Coulomb potential of the atomic
nucleus. However, the important analogy to the physics
of atoms has its origin in the fact that the electrons are
confined by a rigid electrostatic potential. A metal clus-
ter is much more similar to the nuclear case in the sense
that Jahn–Teller deformations become important in the
midshell regions. If the system is fully unconstrained in its
geometrical symmetry, the Jahn–Teller effect seems to be
a much stronger mechanism than spin alignment due to
Hund’s rules.
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Finland and the TMR programme of the European Community
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